

Development of a Production Scale Process for the Manufacture of New IM Pressable PAX-46 Explosive

2010 Insensitive Munitions & Energetic Material Technology Symposium

Brian Alexander, Matt Hathaway, *Mike Ervin BAE SYSTEMS Ordnance Systems Inc. Holston Army Ammunition Plant, TN, USA

Philip Samuels
U.S. ARMY PM-CAS
Picatinny Arsenal, NJ, USA

PAX-46 Briefing Outline

- Background The Need for a Low-cost IM Pressable Explosive
- Development and Scale-up Program
- PAX-46 Test Results
- 2010 Program Goals
- Lessons Learned and Observations from PAX-46 Scale-up
- Conclusions
- Acknowledgements

Background

- Pressable Compositions widely used in U.S. DoD Applications
 - Examples: Comp A-3, Comp A-5
 - GMLRS, M430A1 40mm, submunitions, shape charges and boosters
 - Waivers issued to meet DoD 5000.2-R Guidelines
- Comp A-5
 - Pressing Issues
 - High NOL Card Gap
 - Fails IM Tests
- ARDEC Performed Modeling Calculations on Candidate Desensitizing Agents to Match Performance of Comp A-5 Explosive
 - Chlorinated binder systems selected to desensitize RDX
 - Low cost and commercially available

Summary of PAX-46 Development Program - 2007

- ARDEC finalized chlorinated binder system for Comp A-5 replacement
 - Conducted pressing/machining studies on molding powder billets
 - Optimized PAX-46 formulation: RDX (Cl. 3 & FEM grades) and chlorinated waxes
- HSAAP tasked with laboratory development of slurry coating process
 - Processing Parameter Evaluation
 - Agitation Rate
 - Coating Cycle Time
 - Temperature
 - Addition Rate
 - Binder Solubility
 - Water/Solvent Ratio
 - 2 "Grades" (Particle Size) of PAX-46 Product Generated
 - Fine
 - Coarse
- 50 lbs of Evaluation Material Manufactured
 - Shipped to ARDEC for Evaluation

General Observations from PAX-46 Test Results

- Composition Analysis
 - Screen Fractions Show Uniform Coating
- Bulk Density>0.95 g/cc
- Flow
 - Free flowing
 - 7-12 (Flowdex measurement)
- ERL Impact
 - >35 cm typical

Test Results

Pressing

Parameters	LX-14	PAX-46		
Press Load (F/LBS)	40,000	26,500		
Temp (℉)	210	150		
Cycle	1 min ON -30 sec OFF-1 min ON-30 sec OFF-1 min ON	2 min		
TMD (%)	98.5%	99%+		

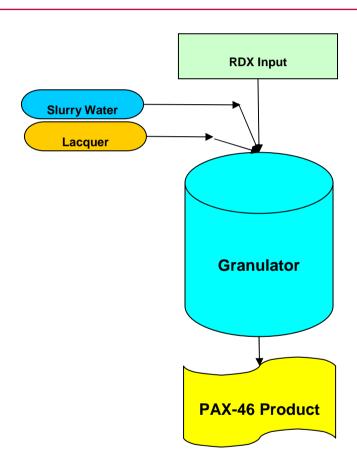
 Wall Velocity / Gurney Energy

Formulation	Wall Velocity (km/s)		Gurney (km/s)			
	2	7	2	7		
PAX-46	1.469	1.796	2.418	2.955		
PAX-2A	1.031	1.340	2.129	2.767		
Comp A-5	1.087	1.363	2.333	2.925		
LX-14	1.590	1.797	2.482	2.986		

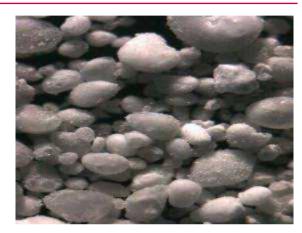
Bullet Impact

- Type V Reaction Burn
 - Explosive material recovered after test

PAX-46 - 2010 Program Goals

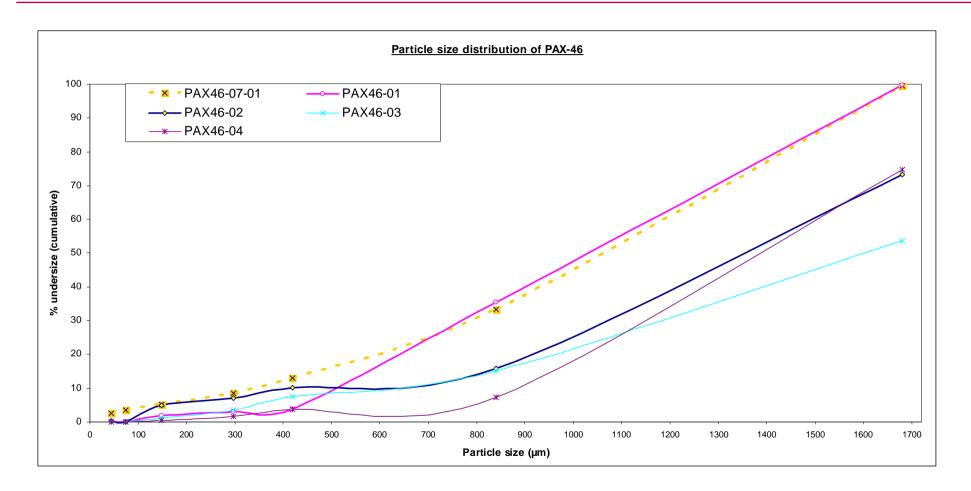

- Effective Transfer of Lab-scale Process to HSAAP Manufacturing
- 2,000 lb PAX-46 Production Campaign
- 4 x 500 lb Batches
 - Pilot Vacuum Still (Bldg G-6)

PAX-46 Manufacture


- Traditional HSAAP "Slurry Coating" Technique
 - RDX Slurry in Water
 - Chlorinated Binder Dissolved in Organic Solvent (Lacquer)
 - Lacquer Charged to Slurry to induce Granulation
 - Solvent Distilled and Recovered
 - Product Filtered and Dried

PAX-46 Product

- All 4 Batches Targeted Customer Specifications
- Coating Technique Fits Traditional Processing and Infrastructure at HSAAP
- Fast Production Cycle Times ~ 1.5hr
 - Compared to 3-4hrs for most PBX's
 - Good production robustness & efficiencies
- Estimated Product Costs Near Legacy Explosive Targets



Select Analytical Results from PAX-46 Production Batches

	Bulk			% passing USSS #					ERL	
Density Batch # (g/cc)		Co-eff. Friction	12 (1680μm)	20 (841µm)	40 (420μm)	50 (297μm)	100 (149μm)	325 (44µm)	Impact (cm)	
PX46-01	1.0471	7	179.58	99.7	35.5	3.7	3	1.9	0.3	39.05
PX46-02	1.0695	9	235.8	73.2	15.8	10.2	7	4.9	0.3	36.17
PX46-03	1.1236	9	247.8	53.6	15.2	7.6	3.6	1.3	0	34.15
PX46-04	1.0582	8	207.41	74.6	7.4	3.7	1.7	0.4	0	34.15

Production Results

PAX-46 Production - Observations & Lessons Learned

- PAX-46 Production Batches
 - Production material coarser than targeted lab-scale parameters
 - Increase efficiency in high speed pressing application
- Lessons Learned Key Processing Parameters
 - Agitation Rate
 - Coating efficiency sensitive to "turnover" rate of the slurry medium
 - Temperature
 - "Solvent swelling" of the binder system observed at higher temps
 - Distillation Time
 - Resonance time during distillation affected particle size distribution

Conclusions and Way Forward

- PAX-46, a Promising IM Replacement for Comp A-5, has been Successfully Scaled at HSAAP (500-gallon capacity)
- 2,000 lbs Manufactured in Program
- Pressing, Performance, and IM Testing in Progress at ARDEC
- PAX-46 Appears Suitable for High-Speed Pressing Operations
- Product Meets Objective of "Low-Cost" IM Pressable Explosive
- Planned Munitions Evaluations
 - M430A1 HEDP 40mm Grenade
 - Bangalore Torpedo
 - M2A4/M3A1 Cratering Charges
- Future Effort
 - DOE of production process (6,000-gallon scale)
 - Engineering efficiency of distillation cycle

Acknowledgement

- U.S. ARMY PM-CAS
 - P. Samuels, L. Jelinek
- BAE SYSTEMS OSI
 - B. Alexander, D. Painter, M. Hathaway, K. Guntrum, V. Reece, J. Fleming